电子产业一站式赋能平台

PCB联盟网

搜索
查看: 4355|回复: 3
收起左侧

教科书上绝对学不来的PCB布线秘籍,拿走不谢!

[复制链接]

26

主题

69

帖子

775

积分

二级会员

Rank: 2

积分
775
发表于 2018-12-21 13:22:13 | 显示全部楼层 |阅读模式
- f, Y$ `7 \5 O3 `
在电路设计过程中,应用工程师往往会忽视印刷电路板(PCB)的布局。通常遇到的问题是,电路的原理图是正确的,但并不起作用,或仅以低性能运行。在本文中,我将向您介绍如何正确地布设运算放大器的电路板以确保其功能、性能和稳健性
7 c8 ]9 X( i# S5 b/ u5 @9 n! I
中国IC交易网     在利用增益为2V/V、负荷为10kΩ、电源电压为+/-15V的非反相配置OPA191运算放大器进行设计。图1所示为该设计的原理图。
图1:采用非反相配置的OPA191]OPA191原理图
我让实习生为该设计布设电路板,同时为他做了PCB布设方面的一般指导(例如:尽可能缩短电路板的走线路径,尽量将组件保持紧密排布,以减小电路板所占空间),然后让他自行设计。设计过程到底有多难?其实就是几个电阻器和电容器罢了,不是吗?图2所示为他首次尝试设计的布局。红线为电路板顶层的路径,而蓝线为底层的路径。
图2:首次布局尝试方案
看到他的首次布局尝试,我意识到了电路板布局并不像我想象的那样直观;我至少应该为他做一些更详细的指导。他在设计时完全遵从了我的建议:缩短了走线路径,并将各部件紧密地排布在一起。但其实这种布局还有很大的改善空间,以便减小电路板寄生阻抗并优化其性能。
接下来就是对布局的改进。我们所做的首项改进是将电阻R1和R2移至OPA191的倒相引脚(引脚2)旁;这样有助于减小倒相引脚的杂散电容。运算放大器的倒相引脚是一个高阻抗节点,因此灵敏度较高。较长的走线路径可以作为电线,让高频噪声耦合进信号链。倒相引脚上的PCB电容会引发稳定性问题。因此,倒相引脚上的接点应该越小越好。
将R1和R2移至引脚2旁,可以让负荷电阻器R3旋转180度,从而使去耦电容器C1更贴近OPA191的正电源引脚(引脚7)。让去耦电容器尽可能贴近电源引脚,这一点极其重要。如果去耦电容器与电源引脚之间的走线路径较长,会增大电源引脚的电感,从而降低性能。
我们所做的另一项改进在于第二个去耦电容器C2。不应将VCC与C2的导孔连接放在电容器和电源引脚之间,而应布设在供电电压必须通过电容器进入器件电源引脚的位置。图3显示了移动每个部件和导孔从而改善布局的方法。
图3:改进布局的各部件位置
将各部件移至新位置后,仍可以做一些其他改进。您可以加宽走线路径,以减小电感,即相当于走线路径所连接的焊盘尺寸。还可以灌流电路板顶层和底层的接地层,从而为返回电流创造一个坚实的低阻抗路径。图4所示为我们的最终布局。
图4:最终布局
下一次当您布设印刷电路板时,建议您遵循以下布设惯例:
● 尽量缩短倒相引脚的连接。
● 让去耦电容器尽量靠近电源引脚
● 如果使用了多个去耦电容器,将最小的去耦电容器放在离电源引脚最近的位置。
● 不要将导孔置于去耦电容和电源引脚之间。
● 尽可能扩宽走线路径。
● 不要让走线路径上出现90度的角。
● 灌流至少一个坚实的接地层。
● 不要为了用丝印层来标示部件而舍弃良好的布局。
INA 用于要求放大差分电压的应用,如测量通过高侧电流感应应用中分流电阻的电压。图5所示为典型单电源高侧电流感应电路的原理图。8 K( i8 {9 @+ A/ u
图5:高侧电流感应原理图
图5测量的是通过RSHUNT的差分电压,R1、R2、C1、C2和C3用于提供共模和差模滤波,R3和C4提供U1 INA的输出滤波,U2用于缓冲INA的参考引脚。R4和C5用于形成低通滤波器,将运放给INA参考引脚带来的噪音降至最低。
虽然图5中的原理图布局看起来很直观,但却非常容易在PCB布局中出错,造成电路性能下降。图6显示了工作人员在检查INA布局时常见的三种错误。
图6:INA常见PCB布局
从上图可见,第一个错误是对通过电阻器差分电压Rshunt的测量方式。可以看到Rshunt到R2的线路较短,因此其电阻要小于Rshunt到R1线路的电阻。这一线路阻抗上的差异可能会引入INA的输入偏置电流在U1输入侧造成差分电压。由于INA的任务是放大差分电压,因此,如果输入侧的线路不平衡可能会导致出现错误。因此,需确保INA输入线路的平衡并尽可能短。
第二个错误则是关于INA增益设置电阻Rgain的。U1引脚到Rgain焊垫的线路长于实际所需长度,因此会造成额外的电阻和电容。由于增益取决于INA增益设置引脚、引脚1和引脚8之间的电阻,额外的电阻可能带来错误的目标增益。而由于INA的增益设置引脚连接着INA内的反馈节,额外的电容可能造成稳定性问题。因此,需确保连接增益设置电阻的线路应尽可能短。
最后,可能需要改进缓冲电路参考引脚的位置。参考引脚缓冲电路位于距离参考引脚较远的位置,这可能增加连接参考引脚的电阻,导致噪声或其他信号可能耦合到线路中。参考引脚上额外的电阻可能会降低大多数INA提供的高共模抑制比(CMRR)。因此,需将参考引脚缓冲电路安排在尽可能靠近INA参考引脚的位置。
图7所示为纠正这三类错误后的布局。
图7:纠正三类错误后的PCB布局
在图7中,可以看到R1和R2到分流电阻的线路长度相同,并采用了一个开尔文连接。增益设置电阻到INA引脚的线路做到了尽可能短,基准缓冲电路也尽可能靠近参考引脚。
如果您今后要为INA布局PCB,请确保遵循以下原则:
● 确保输入侧所有线路完全平衡;
● 减少线路长度并最大程度降低增益设置引脚上的电容;
● 将基准缓冲电路安排在尽可能靠近INA参考引脚的位置;
● 将解耦电容安排在尽可能靠近电源引脚的位置;
● 至少覆设一个实心接地层;
● 不要为了给元件使用丝印而牺牲良好的布局;
● 遵循本文第一部分中提到的指南。

) a( x: I9 ?1 U5 r

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

0

主题

6122

帖子

2万

积分

凡亿读者

积分
20610
发表于 2018-12-21 19:41:25 | 显示全部楼层
谢谢分享PCB布线秘籍
回复 支持 反对

使用道具 举报

0

主题

6122

帖子

2万

积分

凡亿读者

积分
20610
发表于 2018-12-21 19:41:42 | 显示全部楼层
谢谢分享PCB布线秘籍
回复 支持 反对

使用道具 举报

10

主题

595

帖子

3010

积分

四级会员

Rank: 4

积分
3010
发表于 2018-12-22 13:26:22 | 显示全部楼层
谢谢分享PCB布线
回复 支持 反对

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


联系客服 关注微信 下载APP 返回顶部 返回列表