在《pcb设计丨电源设计的重要性》一文中,已经介绍了电源设计的总体要求,以及不同电路的相关布局布线等知识点,那么本篇内容,小编将以RK3588为例,为大家详细介绍其他支线电源的PCB设计。 $ E0 s! `: h7 `) u) A
电源PCB设计
B3 o1 h0 w' o5 t% _2 O* J3 V! h01 如下图(上)所示的滤波电容,原理图上靠近RK3588的VDD_CPU_BIG电源管脚绿线以内的去耦电容,务必放在对应的电源管脚背面,电容GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在芯片附近,而且需要摆放在电源分割来源的路径上。 & R& Y; n. l" h8 V h4 C/ W
7 }7 n! _6 F' o, m5 n! Z* y4 w: I. ~: e8 L: [
* X5 [" l$ v9 Z02 RK3588芯片VDD_CPU_BIG0/1的电源管脚,保证每个管脚边上都有一个对应的过孔,并且顶层走“井”字形,交叉连接。 如下图是电源管脚扇出走线情况,建议走线线宽10mil。 / |* \' B' ~% A( _+ f; {
7 z& a' r8 E- X) J, ]03 VDD_CPU_BIG0/1覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚路径都足够。 04 VDD_CPU_BIG的电源在外围换层时,要尽可能的多打电源过孔(12个及以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 05 VDD_CPU_BIG电流比较大需要双层覆铜,VDD_CPU_BIG 电源在CPU区域线宽合计不得小于 300mil,外围区域宽度不小于600mil。 尽量采用覆铜方式降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜),如下图所示。 * S* h# Z6 S7 o
9 r0 t+ B* U, `4 P9 m2 Y. _4 ~
0 B- H n. }9 Y( }
7 w* e; b2 Y e9 }9 ^* B06 电源平面会被过孔反焊盘破坏,PCB设计时注意调整其他信号过孔的位置,使得电源的有效宽度满足要求。 下图L1为电源铜皮宽度58mil,由于过孔的反焊盘会破坏铜皮,导致实际有效过流宽度仅为L2+L3+L4=14.5mil。
, N3 S2 k1 T- f( p, i& Q, x+ f% O0 i8 Q. N5 p- X
07 BIG0/1电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧12个,如下图所示。 . a: B- h% K. f$ X# L
- X; f- o" [8 O08 BIG电源PDN目标阻抗建议值,如下表和下图所示。 ; E! v4 f9 s' ^" o
1 l4 Z7 ~. Q& s2 z7 N6 j
: i% O5 i# y7 j0 u3 Q6 n* n& @: Q. ~1 E4 U
电源PCB设计 VDD_LOGIC 01 VDD_LOGIC的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚路径都足够。 02 如下图(上)所示,原理图上靠近RK3588的VDD_LOGIC电源管脚绿线以内的去耦电容,务必放在对应的电源管脚背面,电容的GND管脚尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在RK3588芯片附近,并摆放在电源分割来源的路径上。
5 ~1 p( q+ E5 q7 _ ~8 ^! t/ g4 a* A+ T/ h. r9 V6 r8 ^
1 S. ~# {9 K" \+ l) m9 P8 R0 i
% I: H" y* ^% ?6 z3 v& n$ z03 RK3588芯片VDD_LOGIC的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图所示,建议走线线宽10mil。
/ X' {3 i" t: D& p6 @1 y9 ?2 Q+ c3 i2 T0 n% a
04 BIG0/1电源过孔40mil范围(过孔中心到过孔中心间VDD_LOGIC电源在CPU区域线宽不得小于120mil,外围区域宽度不小于200mil。 尽量采用覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜),GND过孔数量建议≧12个。
3 y/ U9 a4 M' L# _6 p& s; A
0 Y$ z+ @/ v9 O5 a! i" P8 J05 VDD_LOGIC的电源在外围换层时,要尽可能的多打电源过孔(8个以上10-20mil的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用,如下图所示。 ! C! m( \$ F" O; e" G9 I
5 l5 ]% j7 F4 j. b+ Z& |06 电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧11个,如下图所示。 k6 V( X5 [/ H3 H
+ ?8 z# e/ ~2 C# p% v
电源PCB设计 VDD_GPU 01 VDD_GPU的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。 02 VDD_GPU 的电源在外围换层时,要尽可能的多打电源过孔(10个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 03 如下图(上)所示,原理图上靠近RK3588的VDD_GPU电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
' |# o3 n1 G9 A4 j) E, ]
p8 |8 h+ q4 |& _/ [
& O/ Q' C4 L1 t; u# `2 {; q9 ?+ t* E% t P. R+ f/ ]" B
04 RK3588芯片VDD_GPU的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图所示,建议走线线宽10mil。
5 ~& W( x7 k2 i5 }$ _7 I, d. b# z7 C! O5 g* F# v& G- Y
05 VDD_GPU电源在GPU区域线宽不得小于300mil,外围区域宽度不小于500mil,采用两层覆铜方式,降低走线带来压降。
+ ]) J! d$ T; D7 V) m) D' p) _# w1 @6 r, o: X: T
06 电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧14个,如下图所示。
. g6 p$ t8 ^8 H$ e, f, y& T- o1 y: h9 o' y; E! E
设计完PCB后,一定要做分析检查,才能让生产更顺利,这里推荐一款可以一键智能检测PCB布线布局最优方案的工具:华秋DFM软件,只需上传PCB/Gerber文件后,点击一键DFM分析,即可根据生产的工艺参数对设计的PCB板进行可制造性分析。 华秋DFM软件是国内首款免费PCB可制造性和装配分析软件,拥有300万+元件库,可轻松高效完成装配分析。其PCB裸板的分析功能,开发了19大项,52细项检查规则,PCBA组装的分析功能,开发了10大项,234细项检查规则。 基本可涵盖所有可能发生的制造性问题,能帮助设计工程师在生产前检查出可制造性问题,且能够满足工程师需要的多种场景,将产品研制的迭代次数降到最低,减少成本。
8 z3 k# Z/ f% Q( n
, W. R2 c5 W1 ~8 i" b' Z电源PCB设计 VDD_NPU 01 VDD_NPU的覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。 02 VDD_NPU的电源在外围换层时,要尽可能的多打电源过孔(7个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 03 如下图(上)所示,原理图上靠RK3588的VDD_NPU电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。 5 I' l3 N; n3 o1 m2 c' }
& i8 O1 Y# N% C5 }6 ]' ?' B4 I- ]2 |- h
- R# X6 g% j9 y2 `) ~/ |
, p, k8 I j; M) z- a04 RK3588芯片VDD_NPU的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图所示 ,建议走线线宽10mil。
/ [8 z0 {% N' R& P0 k1 N e3 F0 {1 P5 \. m
05 VDD_NPU电源在NPU区域线宽不得小于300mil,外围区域宽度不小于500mil。 尽量采用覆铜方式,降低走线带来的压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。 ; b1 g4 X* B1 v; S& m0 r
! z) e- R+ y/ Y) X8 d" K6 Q
06 电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧9个。 % P; L" G/ n7 X( I7 N
2 f/ M$ k1 P2 E |8 I$ ~* D
电源PCB设计 VDD_CPU_LIT 01 VDD_CPU_LIT覆铜宽度需满足芯片电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。 02 VDD_CPU_LIT的电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 03 如下图(上)所示,原理图上靠近RK3588的VDD_CPU_LIT电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。 + K! F& M! q+ |2 J+ K
' ~$ k, Y# @* T
4 F9 Y; M/ F9 \# g/ V1 ]; K% {! u! G0 E3 S, ^) p
04 RK3588芯片VDD_CPU_LIT的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。
! U* p3 j s, [2 q$ Z! \) F; _. Y" g- _# \" r( k
05 VDD_CPU_LIT电源在CPU区域线宽不得小于120mil,外围区域宽度不小于300mil。 采用双层电源覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。
6 y, s3 K: {- z! x. W" P$ l5 d4 U# X
06 电源过孔40mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧9个。
9 d; R. f+ A. y8 U. h7 h; Y) t ?
; }! M' e9 f5 s C4 F' g. w电源PCB设计 VDD_VDENC 01 VDD_VDENC覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。 02 VDD_VDENC电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 03 如下图(上)所示,原理图上靠近RK3588的VDD_VDENC电源管脚绿线以内的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,如下图(下)所示。 其余的去耦电容尽量摆放在RK3588芯片附近,并需要摆放在电源分割来源的路径上。
. p; v2 {6 H7 G" ^* z% F3 A5 t$ N) ^: N3 M7 o
# |8 l0 U& r8 g/ B, p: A$ w- t% i7 @: c+ W' Q' a5 c) t' v2 |* p
04 RK3588芯片VDD_VDENC的电源管脚,每个管脚就近有一个对应过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。 8 q. `1 |0 b) ]; O
: i, E( l& C B+ m6 b
05 VDD_VDENC电源在CPU区域线宽不得小于100mil,外围区域宽度不小于300mil,采用双层电源覆铜方式,降低走线带来压降。
6 \4 ]9 `5 V( ?( e8 [1 ?2 q! q/ X) `/ B6 s6 I! O7 a+ n
06 电源过孔30mil范围(过孔中心到过孔中心间距)内的GND过孔数量,建议≧8个。 ; B0 d* K- W# ]
# f3 F) D h3 x% k0 r电源PCB设计 VCC_DDR 01 VCC_DDR覆铜宽度需满足芯片的电流需求,连接到芯片电源管脚的覆铜足够宽。 路径不能被过孔分割太严重,必须计算有效线宽,确认连接到CPU每个电源PIN脚的路径都足够。 02 VCC_DDR的电源在外围换层时,要尽可能的多打电源过孔(9个以上0.5*0.3mm的过孔),降低换层过孔带来的压降。 去耦电容的GND过孔要跟它的电源过孔数量保持一致,否则会大大降低电容作用。 03 如下图(上)所示,原理图上靠近RK3588的VCC_DDR电源管脚的去耦电容务必放在对应的电源管脚背面,电容的GND PAD尽量靠近芯片中心的GND管脚放置,其余的去耦电容尽量靠近RK3588,如下图(下)所示。 - M! c4 H+ \# E. `# B1 s; J/ g) D; {
6 ^8 K- z. x1 h# s: u
g' S N# }) Z( L6 p [. E) `/ X% U) |' `0 i2 ^. Y
04 RK3588芯片VCC_DDR的电源管脚,每个管脚需要对应一个过孔,并且顶层走“井”字形,交叉连接,如下图建议走线线宽10mil。 % P" Y- w9 G6 U+ m' w
2 t! @% K+ H" h- t! a4 g. K当LPDDR4x 时,链接方式如下图所示。 6 n% [& p2 V7 M0 O- A9 T
+ G5 T" \% X9 m; {) X6 r" j; e) U05 VCC_DDR电源在CPU区域线宽不得小于120mil,外围区域宽度不小于200mil。 尽量采用覆铜方式,降低走线带来压降(其它信号换层过孔请不要随意放置,必须规则放置,尽量腾出空间走电源,也有利于地层的覆铜)。 ) K o. ?+ Y, k3 W+ M7 t
3 n* g# y# h) m' d# _+ L4 |
设计完PCB后,一定要做分析检查,才能让生产更顺利,这里推荐一款可以一键智能检测PCB布线布局最优方案的工具:华秋DFM软件,只需上传PCB/Gerber文件后,点击一键DFM分析,即可根据生产的工艺参数对设计的PCB板进行可制造性分析。 华秋DFM软件是国内首款免费PCB可制造性和装配分析软件,拥有300万+元件库,可轻松高效完成装配分析。其PCB裸板的分析功能,开发了19大项,52细项检查规则,PCBA组装的分析功能,开发了10大项,234细项检查规则。 基本可涵盖所有可能发生的制造性问题,能帮助设计工程师在生产前检查出可制造性问题,且能够满足工程师需要的多种场景,将产品研制的迭代次数降到最低,减少成本。 + c3 S1 q1 R4 ?: U/ n
|