|

zkmyrwk0rly6405170516.png
+ W1 L2 U2 g8 k4 [* d: l; G点击上方蓝字关注我们) _7 k* o- q1 r3 j9 \7 M* Q
gi4t0fmrbsh6405170616.png
# Y3 ]2 n1 F4 t- j& h6 {
注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?5 D0 N' s8 d: L! d. w$ p3 }
6 J" t3 o w4 h( n9 g. {* M
ta3su3h4b5j6405170716.png
" J/ M- n& g e+ a3 U2 p9 ^; P4 n6 t" v% `& h% o
6 [, Q- a6 l& \$ ~) W3 D4 x: t1.真实值和预测值展示图$ Z* b" p8 R+ p$ O
; ^" r/ k& Y4 n* ]! J) ~+ i; q3 i
f3vse0wgvsy6405170816.png
- [5 b3 j V3 r7 jTips:数据比较多、算法多的适合比较难看出实际的效果
' D3 ^, d( R8 m; J5 E) D数据就是各个算法预测值和真实值数据(工具箱直接导出)5 n! G$ D: {' L- e. J- @8 B0 u1 J7 _
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off
5 v* X. H, _* w. ^0 |' a1 f1 n
. G# S+ N2 c4 ?
# o3 e* C, I* }! U8 E) Y2 u" n
4 ~" Z% L2 I" V: T( X2.误差柱状对比图
, {6 O0 W# I5 Y. j# T
yvjybvevud56405170916.png
D$ H. D0 x. {) X6 a z
Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
8 o1 c' C u1 e# x; cTest_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on* t* g8 F* g* s4 ^) g1 `5 D! s4 S, [
for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end6 d- S6 R6 Y6 N3 A% \
for i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end
' O8 e; S- Y v5 @; ofor i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend ! |' b2 n* N9 e. `6 s
ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off: ]) A5 L5 B% f
# J, b: J _' i( {8 @; { A! p! W7 }
# Q$ x# O5 j, ^6 D
( Z2 P2 Q* f) M5 h# c, D! m. ]! @! {, Y7 e
3.误差散点对比图
: V: X. F, Y( i$ l
syu5xqepsbu6405171016.png
7 Q# W0 k# P2 d9 U; o
Tips:可以任意选择两个误差衡量维度
4 v* B0 r5 C1 }figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on. Q4 [% q1 a- ^, ], j& }, C9 }; L
2 M9 I/ y2 k# \! i' v$ R+ y) Y, N$ ]* }( h* ?" P2 s2 P4 u
+ U# W) U- G) y0 u" Y2 H2 h* Z4.误差密度散点图) X6 ?0 g0 p* L2 k, v+ v% P
dhnt1i4axun6405171116.png
; `. r5 b) [) t% x. U0 |
- b. v, a! P2 p8 X) P% G) Jfigure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end& ]: r( L! k7 ?1 \) u a
5 M6 `' w! F4 V
/ u' q/ d% Y7 W3 x( j" d6 Q
) b' G0 o& T' Z/ ]+ M
9 t- |/ J' q) v) _0 D1 u5.误差雷达图
6 r' d/ w9 W$ N# _5 m8 G
muc1jfssmfq6405171216.png
7 E) I2 g B. s, X- \8 [
Tips:为了让图片更美观将多个维度评价指标进行归一化处理了
( k0 ?( _; O# e3 q+ x: ofigure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end
! @+ A! z! b4 y8 D1 _6 X本图参考了公众号:slandarer随笔1 r8 M- Y% k) X$ G
https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA
: O2 a3 u$ d5 Y: o) k6 M+ D+ V
' [& N4 G o2 F$ Y3 n调用函数
8 W' Y8 o, C& G9 r0 \7 |8 _, xclassdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari2 X; g+ P/ u" J% Z* B* t
properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};/ o1 c: `; R h& N# l# s, X5 H' y; h
BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;' f3 [- \2 d1 y: P \- A
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end' i7 M+ N+ o1 G7 M& u2 O
methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
0 c# ], s7 L+ @0 r/ R$ F8 T, Y- V( o obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];
& t$ d# L$ a) y) C5 r' T+ c % 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end
1 |$ _# Y4 ]: O# {; g function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR0 _. U+ k" `+ [3 A) f+ w
sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];; J9 a& c, j& Q# `4 p8 p
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
& A. O! w9 S' e3 b: V % 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);; O. r7 a2 P% \
end end
, W% B. h8 `5 e: \9 }# ]# ? % 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end
) a9 n9 i4 Z# f# L' D$ P % 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end
2 P+ B- a I" r% m7 [ end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end
2 e9 _8 b8 y# S % 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end8 K, \% W+ g, |" X- k) v. J
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end/ f+ H& X/ K6 ` w- F' \$ f) @ x
% 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end2 r# t" i* ]3 S# Y. u
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend# o& b, G7 W0 _/ ]
7 P7 m- C: M0 p$ n. O" V
|: d8 G; J# A9 o1 [8 d# N' W7 A* [
. k6 h4 a! t/ C1 G
6.误差罗盘图
- x5 c+ D3 g* k/ W9 `/ ]( t4 y
s1vhrhghiwk6405171317.png
' G" j" {0 e7 o9 J) ?% o! ^- M
figure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
8 t' u) W! V, @) jend title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')" N7 q# A) v* e
时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~: {( ]" ~4 S: m8 ^5 o
# |* r* E1 |& E/ `& X0 T: k- b) n* ^! u( x% b( f# P6 s' C0 v3 t
- q' s: _3 P1 u7 V
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠. U. M9 T' Q, [9 S4 ~
0 o# ~! }: g$ [% b( M. |) F) t: {- a全家桶系列
; T2 D j, F0 ?8 @+ m% |; b; w一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接
4 X3 x- l# A6 bhttps://mbd.pub/o/bread/mbd-ZJabmJ9v. v0 w* d! J7 J) ~5 S! h
. S8 p% v. R/ ]% N
3 t5 R, L$ l' O) E. [0 D0 n& L" {$ M
ptjow4ojfni6405171417.png
8 J' N+ d F: s, L% v: {- y4 Z+ |: ?' f3 s, I1 J, g9 d# @* V$ w
$ {% |& d8 z+ F% J& Z/ b4 ?% k2 Y! A
hrfhfa4q11m6405171517.png
3 O* q' v$ s# {' X* sEND
3 l# w* a4 i( u- o( T0 c: p- k6 L' ~
q1e45uu1veh6405171617.png
4 x0 ~/ M4 I& D3 h/ K d
3 r) s. b6 [" x) f5 Q5 M+ C. C' ~/ [: e3 O2 A
3jv3vaq5qbu6405171717.jpg
9 H# U% c! m6 Y; I: R* o
长按二维码识别关注
% o0 K; o m9 I0 y5 g往期精彩回顾 c/ C- m2 ~* ^- p* H# ~
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |
|