引言硅基光电子技术成为高性能计算(HPC)和数据中心互连的技术。本文探讨了密集波分复用(DWDM)硅基光电子技术的创新,重点关注惠普企业(HPE)研究人员开发的关键构建模块、集成平台和封装解决方案。
2 S# s* ^: ?$ j$ X. N2 a. c7 T' @7 W2 k! i
用于高性能计算的DWDM架构1 z Q3 n( g' ^, f: o% }+ Y; S
为满足HPC系统不断增长的带宽需求,HPE开发了新型DWDM光收发器架构。这种方法利用光学的波长复用能力,在保持能源效率和低延迟的同时实现高聚合带宽。' u# x, K. B/ q8 L+ h$ i
smywp03hgmg6407743918.png
. R5 ^+ ]* N* Z/ @' p: q5 U" d, c
图1:DWDM光收发器链路示意图,展示了高基数交换机之间的大带宽通信。
! i9 a! O* {( ?" Q. S1 \( b3 i" ~如图1所示,该架构使用多波长梳状激光源产生多个光载波。这些载波随后被微环谐振器调制器阵列调制,这些调制器还充当波长(解)复用器。在接收端,类似的微环谐振器阵列将各个波长通道传送到光电探测器进行检测。
9 ~9 L0 T a1 { C关键构建模块
5 T9 O5 i; S' c7 @3 i多波长梳状激光器量子点(QD)基激光器由于其宽增益带宽和高效的高温工作特性,特别适合作为梳状光源。HPE已经在硅上展示了具有出色性能的异质集成QD梳状激光器。
2 i% }1 e8 L% V. v3 u% ]* _
a0xhvnetjdz6407744019.png
- A+ z* E( y1 h# \7 e图2:(a) 硅上QD梳状激光器的俯视图。(b) 制造的器件的光学显微镜图像。(c) 显示1.2 THz 3-dB带宽梳状谱的光谱图。(d) 单个梳齿线上数据传输的眼图和误码率。- ]3 A% o6 F! Q8 I
图2显示了集成在硅上的QD梳状激光器,具有2.3毫米长的腔体,集成了镜面和可饱和吸收体。该器件展示了相对平坦的梳状谱,3-dB带宽为1.2 THz,通道间隔为101 GHz。数据传输实验表明,在15个测量通道中有14个在10 Gb/s时可以无误差运行。
. f. @& U& S R' w) |- h高效相位调谐器和调制器对于DWDM系统,精确控制各个通道的波长非常重要。HPE开发了新型异质金属-氧化物-半导体电容器(MOSCAP)结构,可实现近零静态功耗的精细调谐。6 ?' l% ~7 P, S: I4 I: t1 J
lji2wyopear6407744119.png
( y. B3 C% p. M& r' B
图3:(a) 异质MOSCAP的TEM图像和集成MOSCAP的微环谐振器/调制器示意图。(b) 异质MOSCAPs的电容-电压特性。(c) 测量的谱图,显示微环谐振随MOSCAP偏置的变化。+ K* q2 F. O( `+ S9 F
图3展示了与微环谐振器集成的MOSCAP结构。通过施加偏置电压,可以调制氧化物界面附近的载流子浓度,通过等离子体色散效应实现快速和高效的相位调谐。仅使用4V偏置就实现了超过1 nm的波长移动,对应超低调谐功率5.3 nm/pW。+ k0 y3 j! z/ c3 R" Y* T8 {- E
高性能光电探测器接收端开发了两种类型的雪崩光电探测器(APDs):硅-锗(Si-Ge)APDs和异质QD APDs。! {: Y3 m9 q: ^( E4 y' K9 @" M
Si-Ge APDs:/ z& a* @: }2 w. h1 M) p7 Y
kwgh0ubc3mt6407744219.png
2 P) d3 i7 M* c S
图4:(a) 波导Si-Ge SACM APD的横截面和(b)鸟瞰图示意图,以及(c)制造的器件俯视图。
! m+ S0 v/ d; n; ~1 |图4显示了波导耦合Si-Ge分离吸收、电荷和倍增(SACM)APD的结构。这些器件表现出优异的温度稳定性,击穿电压温度系数仅为4.2 mV/°C。3 i2 K2 n5 n' I8 f5 g4 Q' `4 x! ]: B
nnw2d0chhlz6407744319.png
( M5 o9 ?8 @7 v4 _图5:Si-Ge波导APDs在(a) 30°C和(b) 90°C下,倍增因子M约为6、8和11.5时的32 Gb/s NRZ和64 Gb/s PAM4眼图。
' W( ^' {* e" S& Z( p% l图5展示了这些APDs的高速性能,在30°C和90°C下均显示出32 Gb/s NRZ和64 Gb/s PAM4调制的清晰开放眼图。' p8 n. U1 c9 H5 [" `1 Y
异质QD APDs:利用与QD激光器相同的外延层,还开发了异质QD APDs。这些器件显示出有希望的性能,包括创纪录的低暗电流和高雪崩增益。
- X1 E0 E# N. I$ @, O
ksuc3c1115q6407744420.png
5 s# |" m; s% q% I* E; C图6:12 μm × 150 μm器件的(a) 准TE模式和准TM模式增益,以及(b) S21频率响应。
4 b2 `4 U x& g" ~2 E图6展示了QD APD的偏振相关增益和频率响应。已实现最大增益150(TE)和300(TM),3-dB带宽为15 GHz,增益带宽积为300 GHz。. o# q& G) n4 J% s
集成平台开发为实现III-V材料与硅基光电子的大规模、低成本集成,HPE开发了新型"键合加外延"方法。6 G) T. n4 p U }% h
quk3nipoana6407744520.png
4 X' K/ J k% |; G1 X图7:制造无缺陷异质平台和硅光源的示意流程:(a) 硅波导形成,(b) 介电层沉积,(c) III-V到硅键合,(d) 大块III-V衬底去除,(e) III-V外延生长,(f) III-V台面形成和金属化。
+ w: x6 @9 T1 g3 d2 n3 ?图7说明了这种集成平台的工艺流程。通过首先将薄III-V模板层键合到硅衬底上,然后进行外延重生长,这种方法消除了晶格和极性不匹配,与直接异质外延相比,显著降低了位错密度。
3 H. u$ X* J7 u5 W! p+ r& k+ U$ V
p4alc3xjvnr6407744620.png
/ t: `5 U( N* m图8:(a) 器件横截面。(b) 混合端面的SEM图。混合端面激光器:(c) RT脉冲LIV(器件显微镜图像),(d) 脉冲LI高达40°C(端面模式分布),(e) 器件光谱。(f) CW LI高达25°C。硅端面激光器:(g) RT脉冲LIV(器件显微镜图像和锥形结构SEM图)。(h) 脉冲LI高达35°C(端面模式分布)。6 E5 U6 L8 G0 V+ n8 l! {2 @
图8显示了使用这种平台制造的激光器的性能,展示了良好的光-电流-电压(LIV)特性,可在高达40°C的温度下实现激射。 A. ?$ _' s$ n0 ^2 c
先进的晶圆级测试和分析为解决环形谐振器器件的表征和鉴定挑战,HPE开发了先进的晶圆级测试和分析技术。2 G5 G* I$ n& i
1. 使用混合键合的堆叠PIC和EIC
" w& c/ ?) G! L" c
ordwfrrakyo6407744720.png
1 T8 u/ g* S3 R9 t m- m2 e( f, m图9:(a) 接收环路中一个频段内检测到的29个共振。(b) 同一接收环路6个频段的所有共振。(c) 分层聚类结果,相同通道用相同颜色和符号编码。/ [' u) S( x0 C$ n
图9展示了一种基于机器学习的方法,用于准确检测和标记多环DWDM收发器中的共振。通过分析多个波长频段的共振,该技术可以区分由反射引起的分裂峰和相邻环的实际共振。/ C: O! K& L; r. L! p, ?9 I
新型光纤连接解决方案硅基光电子封装的关键挑战是实现低损耗、可靠的光学接口。HPE开发了可拆卸的扩展光束光连接器,用于与光栅耦合器阵列连接。0 n6 ^# d" b- F( M
dpbt5s0svjr6407744820.png
) Y: c D+ v i4 ?1 ?
图10:光连接器(a)横截面和(b)组装到硅基光电子中间层上。" O& O! k b+ }% ?, b4 l
图10显示了这种连接器解决方案的横截面和组装。使用微透镜阵列芯片将光栅耦合器的光束准直到扩展光束空间,实现与标准单模光纤的可拆卸接口。
# H# P5 C+ d+ v! f
k3nt5k4apev6407744921.png
M3 |$ M6 C% p8 }0 u图11:光纤到光纤(a)插入损耗重复性,以及(b, c)两个回环光纤通道的传输谱。
# E1 y/ |# r3 D+ ^/ f, n图11展示了这种连接器的性能,显示出低插入损耗(
+ e3 Z1 t8 q; Y3 E6 w; {结论本文介绍的创新展示了硅基光电子技术在下一代HPC互连中的潜力。通过利用DWDM架构和先进的集成平台,可以在带宽密度、能源效率和成本效益方面取得显著改进。该领域的持续研究和开发将在未来带来更大的性能提升。
( S% t5 i* s$ n V6 E参考文献[1]M. Nikdast, S. Pasricha, G. Nicolescu, and A. Seyedi, Eds., Silicon Photonics for High-Performance Computing and Beyond, 1st ed. Boca Raton, FL, USA: CRC Press, 2021.2 D8 u2 @* T* ~4 B7 ~+ x
- END -1 m* t, v/ @1 ?+ B
# ?) G! R$ w: i( v! S
软件申请我们欢迎化合物/硅基光电子芯片的研究人员和工程师申请体验免费版PIC Studio软件。无论是研究还是商业应用,PIC Studio都可提升您的工作效能。
. M/ V' z' c$ r& p9 {& I* J4 m点击左下角"阅读原文"马上申请
( f0 O! R, F. M% Q2 w9 S. e: E+ g
5 \: ?9 U" h( s& O% m c) G* ?欢迎转载
" }0 S# z" }+ K1 q2 f! O
% G( O! h# q* X# g, _1 T; A转载请注明出处,请勿修改内容和删除作者信息!4 ], w) F( z7 n) P, x8 [
/ M3 y9 i4 V3 K+ \) k, h8 S
/ A. j. b* O; [# k' Z: K* }
& Y5 y7 R- Y( V
ri23dsr21lw6407745021.gif
8 R/ k. |% S1 U
7 M: ~( }" j, i* G关注我们
, { l. b7 e1 Y7 [8 B7 e: ]6 m' n. s! |+ P7 {/ w
" n" c" U: |* h6 A3 g5 s/ i
yrfuul2kzzr6407745121.png
/ P/ K8 n) `+ _# F; } q' }9 M | 7 G9 T! p% d4 i# z* J( F1 ]
mo0m4gnx2pw6407745221.png
" q5 K. A- N7 d! [1 z# G" R | ! I% X, W, t2 X, u2 G& x3 Y/ S1 t. |
epj4uli3rz16407745321.png
( w5 O4 S1 K5 m& N0 G
|
4 d0 O: |3 I: U% h
* b3 |4 {) D" T; D
7 _! |6 U6 \# S. V7 I5 v' @% }' ]0 E$ F. D7 R- ~, }
关于我们:
1 h$ N0 w( V! i8 r0 T1 x深圳逍遥科技有限公司(Latitude Design Automation Inc.)是一家专注于半导体芯片设计自动化(EDA)的高科技软件公司。我们自主开发特色工艺芯片设计和仿真软件,提供成熟的设计解决方案如PIC Studio、MEMS Studio和Meta Studio,分别针对光电芯片、微机电系统、超透镜的设计与仿真。我们提供特色工艺的半导体芯片集成电路版图、IP和PDK工程服务,广泛服务于光通讯、光计算、光量子通信和微纳光子器件领域的头部客户。逍遥科技与国内外晶圆代工厂及硅光/MEMS中试线合作,推动特色工艺半导体产业链发展,致力于为客户提供前沿技术与服务。
( y& z' q4 F6 s# t
9 a% I5 e; G) {2 zhttp://www.latitudeda.com/
( V0 W% \) N; o/ i& b) A(点击上方名片关注我们,发现更多精彩内容) |