|

rx3akpfe0mf64015154517.png
* O5 x; K/ H X* ^. Q$ R
点击上方蓝字关注我们
0 ~! \. p' q# J A! `9 V; I/ L, Z
jkiz3myaftd64015154617.png
2 X. ^8 Q9 I7 I5 @% ~0 D 注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?/ W" ?$ n9 V( g* U2 g
/ y i% E8 X7 D& r ?- X1 f& U
g4kxpj422m064015154717.png
0 b. m/ C% @, C) T$ P" B7 M8 Q. Z. e; ]$ h7 d* S2 ?8 h
" R( P! v% q6 k/ ]& w3 }
1.真实值和预测值展示图8 z/ O" ` H2 c! ~+ b
2 H2 u0 |9 r; x- t ?
la2n3mfhzg264015154817.png
9 R, A I6 w" H* e a- r, E9 t
Tips:数据比较多、算法多的适合比较难看出实际的效果
, [6 t4 y5 P- i B: Q$ |数据就是各个算法预测值和真实值数据(工具箱直接导出)5 w3 \! P* P9 A- s9 ~' J
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off
" C: n7 u1 c8 C0 M9 ~
8 L1 C; i8 ~8 |3 W: v+ p1 v* X& Z w
) x$ ~, m/ n3 E; D% k! q+ e
2.误差柱状对比图
; r3 `; l6 ]) W( I3 X6 l
wab51yehzkx64015154917.png
+ s1 w8 i, A6 {+ i! G" lTips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑3 u6 r3 m5 F4 h3 v( C) B8 u
Test_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on" j0 n0 E, g0 J( f- G3 K1 U9 A0 J
for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
, g: x2 G3 A `! ?for i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end, ?6 _8 v$ i4 k' i6 y9 c& h
for i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend 9 e$ G9 S0 B$ z t
ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off G8 P) v- J' i6 L; o
+ Z& H# h, E* J: E) c& _/ d5 |% w9 p0 g* x* |8 X
& @$ g* T3 C/ R" Y/ x7 v7 X- t$ _) V* R6 n+ M7 Z4 L5 x
3.误差散点对比图
5 i# Y# `6 A4 K5 K
wa5kjssogz264015155017.png
7 h4 U t; h9 }/ b* A5 GTips:可以任意选择两个误差衡量维度! Z/ H5 W9 A6 b5 L' c
figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on
8 Q0 z1 s$ `9 y! \* ^3 M6 l" u2 B! f- d* T* R. k6 v4 S5 o5 V
5 s0 B( t( X5 Q4 I2 F- m% p- P9 ?' L0 a; k( d
4.误差密度散点图! \& Q) I* a5 B, e
ged0r4oybv564015155117.png
! U% C# F- n6 Q5 d0 R, Z
" C" n0 I0 e! i7 r: N Z" @, }figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end! ^! n, C' r$ ~& t; |
* i- v4 [) h& \
4 \4 I& ]2 ? Y0 Z; |! Q, m
6 n: q5 T7 t# {
\5 s$ A+ x& M- c& B, k/ `5.误差雷达图
$ p" p3 O$ q7 f/ g1 d. ]+ i
jlvj1itw1pj64015155218.png
( O4 l* W9 ~ Y* L2 q. aTips:为了让图片更美观将多个维度评价指标进行归一化处理了! N- c6 `6 k9 L
figure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end
5 q& }7 f. A T# h2 j+ R本图参考了公众号:slandarer随笔2 F; A( B, C: N: u
https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA' Q8 C- Z) o/ H
: c$ M# C/ z- C7 O9 `调用函数
% O7 V4 D5 ?0 _3 g4 Q* A( hclassdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari
& T8 J2 a6 p4 G# D: D properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};' U4 n( D2 M. ]: v
BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;
- V* U, H1 [9 t % 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end2 f+ O+ v9 V9 S6 [) H
methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
1 X' r- {2 y4 l4 T9 t obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];. W! l; f/ q" \# V- H
% 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end
. S6 T C. J+ e( F function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR2 k+ u: L- y( A
sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];
9 l8 }# r: a9 z: J3 ?- u* B5 v Y0 l XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
_& V0 }. k5 \: T) `5 q; m$ ` M % 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);
, l. K i. v7 S8 U end end
3 ^ }1 h9 {! U5 p" U % 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end h# S0 x% K! f* ^" T/ C
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end& R1 L! a" Z* n# J! c& w+ q
end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end
# ^2 a' w( o3 u3 }& N/ Y % 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end C% u# r5 ]0 W1 |5 @0 U' q
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end
8 o. t* J0 F$ r/ M4 z! ?( N % 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end _$ j; t! `" ]/ A' p
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend0 G0 D( e+ T! F* O G1 {
( m& T' ?4 x, @$ p4 |6 K/ Y/ S2 ~1 ^: d/ |6 ~: O( y
4 `! g7 P0 m0 p9 [ x3 t' P
+ d" ?; l( F8 q4 y1 g' x, h) e6.误差罗盘图 N0 Q) X, \$ |1 T1 n
1yz2olsrjyw64015155318.png
* u$ |; R6 w) q4 c% i# {figure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);5 P. A( n7 b0 A! ]$ ]' A4 e
end title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')2 J& h; o6 D7 ^* f1 d
时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~
/ B* D0 @1 v5 q+ p* e' w+ \6 S
- H7 E+ F1 d$ B6 H! e) L9 l6 b ~$ @" |4 A) f9 f2 @" C, }' e
5 Q3 B: `1 h# @0 ?* S1 c- v: R
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠5 V' _- j5 V w+ b
8 [! h+ d1 Q( i; P, n; S7 Q* M全家桶系列
' o& u Y, ]' z7 Z一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接" x5 v8 z6 f$ |! R# t; s9 U
https://mbd.pub/o/bread/mbd-ZJabmJ9v
, o( {( \8 h, f" U, [! \1 V# n9 x0 f1 ?
$ r& X( W/ e8 A+ [# c, D
01efpmj0crv64015155418.png
$ e6 C5 R }0 P; h8 O3 t6 e: ~
1 \& q2 M" ~2 L, Q, l, o8 N0 J/ I4 `9 _* e5 Z& K. T# p
hk1fqkwdzgy64015155518.png
: d% x# [' s; I# f! Q1 X$ Q p
END
" g8 {# T# K- E( P4 q, J1 G
m2j1p5lkx0y64015155618.png
& t" X+ X& Y# q8 a/ [9 r
" U$ v' ]. b5 }& L# x7 V( ]2 p8 _: F4 a3 m! }& _
5gobmhmv0we64015155718.jpg
7 ^$ l2 A; P- N C4 E
长按二维码识别关注 M2 E. z$ y! G0 W* m
往期精彩回顾
$ Y8 G9 B1 [! T, U. a推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |
|