这张图表显示的是随着DRAM密度增加,刷新(refresh)带来的带宽惩罚百分比的变化情况。从图表中可以看出,随着DRAM容量的增长,刷新操作对总带宽的影响越来越大。在早期的小容量DRAM中,我们可以忽略刷新操作,因为它几乎不会影响系统的整体性能。然而,随着DRAM密度的增加,刷新已经变成了一个严重的限制因素,占据了可用带宽的相当一部分比例。 在高密度DRAM中,例如32Gb,刷新操作可能消耗高达21%的可用带宽,这对系统性能产生了显著的影响。此外,当温度升高时(85-95摄氏度),为了维持稳定性,刷新频率必须加倍,这意味着额外的11%-21%的带宽损失,这是一个非常大的性能下降。
图表右侧还有一条时间轴,表示随着时间的推移,电压也会有所下降,这可能是由于老化或者高温导致的。在标准温度下,电压下降(Droop at standard temp)相对于参考电压(Reference voltage)有一定的幅度,而在高温环境下,电压下降更严重(Droop at high temp)。 SOC上的散热设计是个非常重要的问题。
DDR3引入了命令敏感的ODT(Command-sensitive ODT),提高了信号质量,并且为数据和地址使用了不同的电压参考(Separate voltage references for data versus addresses)。
图中还包括一个内部电路图,显示了VREF_DQ和VREF_CA是如何连接到数据和地址/命令线上的。 DDR3--DDR4
pmpvl0an3x5640836152.png
DDR4引入了更精细的参考电压调整(Shmooing the reference voltage allows tighter calibration),并且图中包括了一个内部电路图,显示了VREF是如何连接到数据线上的。
DDR5DDR5 是当前DRAM行业成熟工艺制程的最新产品,与DDR4 相比:
1xdasq3piup640836252.png
DDR5引入了DIMM上的电压调节(Back side: on-DIMM voltage regulation),以减少电源轨上的噪声(Noise reduction improves data integrity),从而提高输入灵敏度(Noise on the voltage rails results in reduction of input sensitivity)。图中还包含了一个内部电路图,显示了PMIC如何连接到电压轨上。