5a2mn4hwene64012780023.png
9 H. [9 Y+ W9 r, F2 |点击上方蓝字关注我们
$ N5 [$ o# S8 t$ R
sg0j1r5r4fc64012780123.png
9 k9 Y u) T/ d) z J3 {+ {* x$ i 注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?* h: H* k0 O8 O5 ~$ L2 a. {
4 k5 ?0 \0 ?1 B# r3 {/ i7 e; e
0rz3dzq2bls64012780223.png
3 }. Z4 n, V$ H6 z: x/ X) u5 ^) w, m* ~2 M0 w) q- _ E+ X
8 E3 @ h6 C' D/ s9 ^7 W) I& a
1.真实值和预测值展示图* e8 Y; @% b, e+ x
, }7 r6 S; X3 T: s4 p, R
lqkkzt3mpay64012780323.png
0 C% `9 w3 Y- P I7 V$ I
Tips:数据比较多、算法多的适合比较难看出实际的效果: Q/ [5 b/ h+ N; E7 V
数据就是各个算法预测值和真实值数据(工具箱直接导出)# C) A8 t% Q2 _; t
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off3 D" U4 l9 m2 L; \) N1 j: L4 [
. S' U7 h; c- T7 O+ s6 n
& N# c: }$ D" i* q. r
! F7 [+ r0 U0 V2.误差柱状对比图
8 x5 a) B% V9 U8 b6 X6 a% X* t* i
kroecuvlwds64012780423.png
c/ n3 P' d" M: U; g z
Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
* l: w" H. x( d" rTest_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on' Y4 D: S1 V8 K+ D
for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
4 ~4 V# \! }8 S Q L; o8 B# tfor i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end
2 u0 ], w) H. g5 a. R9 H5 I. jfor i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend / d( | a3 f9 K6 S3 i
ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off
1 k5 ~0 z* T% {. X
5 p8 g, g7 f; a1 y' V; F: ~/ s4 W: i( y2 g
/ {6 @6 s6 o3 R) i- [" ^6 d. e4 j7 ~" W a+ q% n3 N+ o* y! D
3.误差散点对比图" ? V* \ O8 K* w" s# q
5bvqj23uyiu64012780523.png
: M, U( e' `* W2 ]Tips:可以任意选择两个误差衡量维度
1 n! d2 O% Z3 k9 @/ m' mfigureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on
# G j S6 \5 j: G& |5 M' }& ]% |8 h: N) _0 |3 J8 v* _
( z# q. @; H4 P7 E& r* A+ W6 C2 ?2 h, |. E8 V
4.误差密度散点图: X$ w" K2 E6 T. r3 L2 |
mqystoxa0fo64012780623.png
, X% K! w# I1 w+ O k: S9 J' u& g& l- ^) B) d5 w* ? C
figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end
" o7 i" \/ P$ K% I$ t& d' c+ l) s# O* c' P
" |0 d# |0 E/ R4 X+ x7 \1 S5 w( G2 B
8 R+ ?4 K* W% h8 _& A
5.误差雷达图
P) G; _! X( D
yuohk3odx3a64012780723.png
* ~( a# k4 h. x) y0 \
Tips:为了让图片更美观将多个维度评价指标进行归一化处理了
0 f. [' ^* m* T) [figure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end# r" ]5 S1 l5 s0 l& @! F
本图参考了公众号:slandarer随笔
0 B" \/ u! K9 k/ @https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA$ {4 N1 ^* J6 G K
/ C% W: ^. e8 v" [3 W% B
调用函数
9 B1 u; ^6 n* O" Q/ h. M3 gclassdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari
3 g! C$ c- M8 B5 \$ E2 x/ Q0 a properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};9 ~6 c0 J0 C) w+ X5 T5 S% Z
BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;6 y6 {; P& d/ D/ S3 |
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
6 K- M( k1 z1 G6 [2 t' x methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
: f: [- ?4 ^# H4 \' U obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];+ C/ W9 C1 b2 h- Q
% 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end2 F& z. @/ C5 w9 _2 K+ R( C
function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR
* [, [% I2 U! f- M sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];1 }' `$ r+ o4 D5 F' @
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
. r% Y& W! K$ S* s+ z. B+ W % 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);
& v3 w3 o( `: m! ~* s end end4 F8 t8 p8 s) @+ b* {/ J. n) B
% 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end0 }1 X3 M8 y9 k
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end \; E# H4 v) j; X! v
end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end
9 n& \' R' t1 T4 [) @ b- ^ % 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end
, c. A7 W' A ?7 E % 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end& D0 m3 _* O! X9 O' ~9 D* ~8 e D
% 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end' G; ]- L# E5 B' S* T
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
/ V' n0 y1 Q4 b- l5 `& c
0 a* a Y5 d R4 a8 {! Y) d D, I& `: b% s5 w8 D
( x( x4 f3 I0 l0 M4 g$ z
: t. y9 k! {, x; w8 K' V6.误差罗盘图/ i2 B6 D" {; q/ l+ L
ful0anfz1ci64012780823.png
5 [ m( R/ ^. _figure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
" E7 }$ f0 f, x, o2 j$ T. M* {end title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')8 o- P) `* [" G4 {4 P" q/ n
时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~: S( o: |. ~& b9 w" h6 l4 Z9 t
) I: K- I& a& [0 y) {0 |8 }9 \0 i g. \" Y% T |
( W. W; F3 E5 W+ R$ h( K
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠2 j6 y9 X$ s' x! \! z* W
7 k: s/ R0 q% ]! Z @& n) S
全家桶系列" ?. Y; b# a4 L
一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接
9 q0 Z2 ?7 v! U4 E: fhttps://mbd.pub/o/bread/mbd-ZJabmJ9v
% M4 R7 c0 u' U2 J K% H; I1 u" \3 a% I L5 i* k5 q8 @0 E
) b9 b& `. X. m
jcbqkqjmmtb64012780924.png
# y' b! d# w6 U9 Y$ l+ C4 ]0 e! C- D0 _0 C( c
' |. N; x B* C8 A- c2 g! Y( b
cfbfan5qfwe64012781024.png
4 [1 E0 _: I' Y9 wEND
0 J; a- I2 X7 l9 {- h
utgcxoontjf64012781124.png
6 |/ Z$ |& O& g6 b! b8 B0 y
" @. r& `/ T2 e& O" I, g
0 ~: e8 x: ^" y, A. J) }+ v
tg5ybxnmdx164012781224.jpg
1 L3 b8 J+ X9 Z+ J
长按二维码识别关注( |' B% S" _8 Q, F2 F
往期精彩回顾; x+ N: s- A( k4 @1 T# y7 l
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |