xt5tsvyi5cy64017640716.png
) M- F3 r& D+ C+ D
点击上方蓝字关注我们8 l' ]7 w* x1 f4 e# n3 n
jfhixiz1nrx64017640816.png
7 P1 l* ?5 Y) C5 Y% ^5 g
注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?
. p6 c Y# ]3 U* w9 B
9 n; _ l+ R2 `5 E/ z% R
3xghylnxqx064017640916.png
3 l- S! y/ d+ L. ~* s5 p6 C
3 Q Q0 S% X* h- [! p7 v
% y9 P3 [+ ]& B0 W9 ]1.真实值和预测值展示图/ w2 T7 e) m! c. W8 ^
) k% l0 ^) F9 u2 O/ H2 {
jym4eg5a2cd64017641016.png
8 h- ]0 v" N1 p3 w7 [! gTips:数据比较多、算法多的适合比较难看出实际的效果' y3 x7 t. | I# K) i- E/ J
数据就是各个算法预测值和真实值数据(工具箱直接导出)- O7 Z) R3 `1 {' C1 z0 V) I
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off1 b, H, l5 J- x
$ j N( K/ H, k2 j3 j( Y% n& Q: A
1 w4 y9 ^4 a9 A
# A) R q5 w' C+ O3 m; w, c$ j2.误差柱状对比图
n0 n# O+ e4 ?$ [: N# V
525gqx1cvaf64017641116.png
( e1 G6 [' c0 R2 [* @Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
" ^8 ?0 v* t7 y, g2 m P" s3 q( wTest_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on' J2 q* H. S9 R; U) ?9 G3 ^
for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
+ r3 k' W7 ]5 b. P& Z r: wfor i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end0 t, H/ U) ~* G+ X, s
for i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend ) E7 }, V+ Z4 Y, w5 r
ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off
6 R$ N! R- ~% n" b$ w& u- f! C. N' z+ Y2 {9 r$ H2 i
0 m+ K9 s& X8 Y$ Q. l
# } `* N( K+ g
) }: d& L I) i! a% M& I3.误差散点对比图
f4 z; S/ x# b
se1nuhcgwaz64017641216.png
9 |6 ^$ m/ ]- k1 Y4 {1 e
Tips:可以任意选择两个误差衡量维度0 S; H. a. ?! B
figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on, p6 t- ]0 X7 Y, q5 d$ O2 r. m3 e7 F; G
! R, E2 R0 [/ X3 M* t) N% v
2 v: x) j, X! ^' g- r* ]; {# I, y
- C8 T( E8 |) v( n; d J$ n6 P( E# v4.误差密度散点图
$ [: M+ t1 h" }3 N' c2 {7 n
s5qhpzrcjxv64017641316.png
5 i+ W( S" {- S8 d2 O' |: f
* N: M6 C0 Y$ _$ \; F; X8 Ofigure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end
1 i& ]: U' g" ]6 ?
) ], Y: o- z8 S# y& ?+ P5 m3 L& F. C, e( ]$ u, f s$ _
6 z+ @* m g) ^3 r \, S3 K
+ X% G2 \, u1 G" l3 O5 m9 h/ J, u( F% q5.误差雷达图 r; M* C9 O$ Y G1 N
1ggcb3s1msz64017641416.png
1 n# B6 `; f4 h) bTips:为了让图片更美观将多个维度评价指标进行归一化处理了* v" F4 P3 x* r5 N: O
figure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end2 M/ j* ~: I/ J) x+ O) R* {, K/ C
本图参考了公众号:slandarer随笔
' w; ~/ [' L7 [8 |- `https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA$ S3 Z U' Q6 n; y9 _7 |/ }0 c" h
# o- u1 L2 i1 [/ V. r# Q5 j# Z
调用函数4 ~9 \; p6 E" \ S" X Y) ?
classdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari
8 O/ s# t2 F4 z0 i$ r5 ~4 w; H properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};
& X/ P# p7 b- k n6 ` BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;2 A2 |& Z% i6 f8 I2 x
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
R3 l9 \. N5 S6 @1 l methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
+ P! n ^, U! ?0 k7 m obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];2 j% M( u7 c. M8 ^7 @
% 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end# E3 i6 b' k1 ^
function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR2 |$ W+ M# b: A& D4 k% p: K% Q1 F
sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];$ J, E* v% {* {9 n/ S
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');2 v" k3 N2 l, C
% 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);1 k3 k1 e9 A& Q2 r/ Y) |# \
end end- o. L! E5 L. I& o: L+ N
% 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end+ b6 i U5 _0 Z9 p3 d2 a& W& e9 t0 U
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end
8 @$ e v, |+ R+ C" i8 O end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end3 r3 W" N- f o$ s; D" }9 \
% 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end% e) V3 }: a0 @# E3 e# l% [9 H
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end
5 P* f0 D$ U; [7 G. Z % 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end% S, R/ U. c5 r; W
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
2 n8 B7 |* }3 P0 z+ {% j) [& P, }" B( z+ L* q7 |2 B4 i- u
% Q g7 @+ U! k& y: [, d+ |. t* {! ^0 c) b
$ ~9 ~9 m5 o. Q$ n5 M- a8 R* s
6.误差罗盘图
/ o2 t( r' M ]+ ^0 g% ]; x
at0iv1ujv4564017641517.png
+ P9 e F' p' n" jfigure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
0 v, y3 _3 V: g( Uend title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside'); q4 U( V. F7 E
时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~
; \9 R8 H3 U$ ?+ H N; l
/ Y9 J% H' i1 V2 Q5 W% n5 Z5 S% Q L* ~) ]- u
( j" k( c' \; g. t# T7 ]ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠
2 n* M9 C5 ? e8 l6 a) h" _ C3 J; O: @) m1 ^1 U& Y" }9 o
全家桶系列4 ~8 B( Q& x) b/ }+ S0 V% Q
一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接
& p7 Y! ?* m: ^- X) `https://mbd.pub/o/bread/mbd-ZJabmJ9v" X/ ]) p+ S* J& ~
& k6 ?9 i! ^+ @7 ]6 p# g3 o/ S" N3 `7 U
piet2xeute364017641617.png
. I/ y$ o* C3 Z0 O/ W
6 h% R2 L$ _ k+ j5 t: a. f4 t/ p8 c9 ~. |$ O
bcw1yatfkud64017641717.png
7 x3 F& ~& A7 {* v# PEND
% X$ v( |7 V* u9 h
nh3ur3a5utk64017641817.png
2 l3 P) E# @2 T- G5 I0 {. b c' X& I3 z' {2 }8 C1 C0 E, j
& p% E8 `) F0 [% V2 F
cmr0a3pi3lo64017641917.jpg
" @7 p6 n4 J1 E, J: P8 ^1 I长按二维码识别关注
, l+ |& t7 P, L% l0 `) |+ w3 U往期精彩回顾* V; D! B& M/ X0 | v" @+ M
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |