|

t5ye44c3vzr64027184214.png
4 Q* @ K2 Y$ z9 m5 z* a
点击上方蓝字关注我们
" l5 N" \$ o: f* k7 J" b
pu5iwgkjlz364027184314.png
7 ]5 A& r* A5 O; Y9 J0 p+ X( E9 e 注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?
9 k1 c- ~0 g" R6 p: @0 ^8 G- c$ N" L! u' g
womk0popmfc64027184414.png
: z* Q/ ^2 R0 P P9 \7 p+ E
$ t3 |& ^; l0 S( O" w. q( r# c
' o4 J# K+ A7 }) B- G+ y b9 z9 D3 R1.真实值和预测值展示图
* y9 w6 L5 f {" w: g2 j O6 t+ H, y" B0 p( ]; P- n& [5 E
g04sataxlza64027184514.png
% B# M1 v8 p2 G; |( P: D* |Tips:数据比较多、算法多的适合比较难看出实际的效果
# W7 z1 O: X$ D$ N t数据就是各个算法预测值和真实值数据(工具箱直接导出)% a7 I3 l/ h$ Q) O' _7 I/ }
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off
+ I4 _( s4 Z, r* Z
- E0 ]2 i" Q% Y4 o' H0 F9 y9 A" J: v2 [1 ]
" Q% `( g: n. }3 o2.误差柱状对比图
% H) s1 C0 z+ c% o8 n1 U
g1zsabm00wq64027184615.png
; j- a9 C; m6 s" d# d5 i2 N, f3 L
Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
$ S' G% c- j9 Z; X: ITest_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on
4 J ^! }8 |6 m+ o! d# ~for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
( {! y' T) c" b" b& J/ wfor i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end
+ p- s6 c" n+ _2 Z) T0 Q: P2 ffor i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend
2 @2 H7 s( T. t8 B9 k/ ~ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off; g/ }3 ^1 C* o& P) a! `" O
; ~3 J4 _7 p& c
' _5 J7 ]% k- ^
4 e& K- b! ~+ D. E
7 r | _$ t# w. m3.误差散点对比图% }, Q, g9 v4 }) l
fy4ct0c5qtr64027184715.png
- u5 Y, J! R( G% K: y6 oTips:可以任意选择两个误差衡量维度7 [5 F- ^4 w7 V2 A I
figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on
0 ]# W9 |) ` M: j$ P
' _: ]9 \) H) N7 X9 ~
5 i: E1 N7 c+ |$ M ]; F
8 }0 I- l/ ^& N1 v3 V/ x6 F4.误差密度散点图- D7 E. Z6 x5 T% t: @
k3guwk5hsgy64027184815.png
. f( n5 n/ e2 k8 u
9 X. a% N5 W+ V$ _5 m
figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end( x, P; Z4 \- O: K
# j! Z- b- |' g' ~ E( f$ R, m0 c2 a: b6 U5 \1 r8 g) |
$ L1 d) o D+ h9 ]) I$ F2 Q' _* w# \& |
5.误差雷达图$ u5 j3 n7 B' u4 M' w4 R' | b
prybb4g5e4c64027184915.png
0 T- v! y( z0 o/ z, h n5 yTips:为了让图片更美观将多个维度评价指标进行归一化处理了
+ P' q* X8 v+ L% s. rfigure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end: T- E- B! @/ V# x! Z; L, q
本图参考了公众号:slandarer随笔
) S/ k/ @) Q( l! W, ^https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA- r, b+ n$ ~: f( J- d" j. H5 {* N
0 y: k# t) j* p7 z- L0 O调用函数
- _0 p- i) c% |2 g4 m$ J. j, C3 K) bclassdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari
% s S( c* ]7 d7 x: M: o0 s properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};
# y0 c/ r2 e' |- e BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;
o6 c: @3 x& |( U1 |) o % 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
; E# e# V3 Y/ V% l3 ^7 x methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
; e$ m! W+ r0 \% W3 u obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];7 K. s' g5 T8 l" Q: Z
% 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end( D( z# h0 g9 e1 o+ \7 a4 s b$ D
function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR
2 D3 N: C& Z* H4 b sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];0 A: n+ |- ?9 Y" a7 j
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');2 \- ^- A, `7 n' ]( _+ `* w
% 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);5 D! l! j( S7 F# j# R* U
end end
6 O6 y7 N0 A! l, \# z4 k % 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end! |" z g9 f$ | k
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end
5 y. p6 t' ?' ~1 j end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end
2 R8 M, _8 U& @" J, | % 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end9 w' |0 ?4 X& f. G/ e% l
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end6 w# [) X6 W3 n' g% E: `, J* |: [
% 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end7 ?) q; K! j0 L- P" l( |/ X
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
' d; E5 C3 U) I- X. h6 r& D# b: K- V7 \# H7 l3 ?
, C2 a4 q1 m6 O: }4 I, ?; s
4 E; {+ n) k1 H! [+ Z3 J3 t
% E3 u2 C& |% b( B" ], W# E
6.误差罗盘图
$ Y6 Y5 t# L+ p# ?0 r8 y% b
ai2ahrdrxpb64027185015.png
$ B: A" p5 W' I. n' vfigure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
4 V' g7 _( F; Y% E s: fend title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')7 u4 Z* ]+ b% J6 a* H7 D
时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~2 Q* ]' B9 k. I) `' s+ T, U
: t+ z) A" e3 }1 P8 n# ^; G8 P" A+ r) h, p% `! m8 W9 |$ R6 C% w. b0 A
- [# J& p; C: h7 N4 o
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠
* x2 O- ]7 |7 o% k) {% M5 ]
2 ~# y% k" U$ i! X3 M全家桶系列
' K6 J8 A# I+ B6 U1 L+ ~一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接1 R; @+ O( M! |' A
https://mbd.pub/o/bread/mbd-ZJabmJ9v/ ^% ^1 @/ K7 X$ e; A
9 F) E1 G( o! h6 q0 ]7 i% r( D2 f& ^4 u( |8 p" _
bai5peccupz64027185115.png
' A( H( H& w) }2 o% C* I; E
- m2 z3 s* P, \+ g- h6 u* _' e" U# u* X! {2 I. W5 I6 ^
0y4nitrnlkt64027185215.png
$ ?% s9 @) b2 h+ Y; R6 {6 j
END& @# B3 j6 S+ X2 y$ I" \
i5nyo4wgt0c64027185315.png
! o0 y3 h z- P1 }% c
& ]0 X; o$ {7 R6 _) } d% ~' K" b0 S
ucgvtnyytvh64027185415.jpg
& a4 U" E% h5 m# W3 G1 Q5 }2 j4 G
长按二维码识别关注0 M: U3 H! J/ `4 c1 W; A
往期精彩回顾: {% r3 K4 o& A E6 s# w, D5 _
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |
|