电子产业一站式赋能平台

PCB联盟网

搜索
查看: 78|回复: 0
收起左侧

三极管放大电路静态工作点

[复制链接]
匿名  发表于 2024-9-9 09:22:00 |阅读模式
三极管一般放大电路


C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。
R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。
在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作 状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。
首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。
若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算Ib增大,它也不能再增大了。
以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态
理解静态工作点的设置目的和方法
放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于电源电压的一半,为什么?
这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号输入为0,假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=Ic×R2会随之增大,Uce=VCC-U2,会变小。U2最大理论上能达到等于VCC,则Uce最小会达到0V,这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V.
同理,当输入信号减小时,则Ib减小,Ic电流减小,则电阻R2的电压U2=Ic×R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以1/2VCC为准的话就有一个对称的正负变化范围,所以一般图1静态工作点的设置为Uce接近于电源电压的一半。
要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压的一半?这就是的手段了。
这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β×Ib,但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东西比较的多,但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安,中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。
在图1中,设Ic为2mA,则电阻R2的阻值就可以由R=U/I来计算,VCC为12V,则1/2VCC为6V,R2的阻值为6V/2mA,为3KΩ。Ic设定为2毫安,则Ib可由Ib=Ic/β推出,关健是β的取值了,β一般理论取值100,则Ib=2mA/β=20uA,则R1=(VCC-0.7V)/Ib=11.3V/20uA=56.5KΩ
但实际上,这种电路受β值的影响大,Ic=β×Ib,U2=Ic×R2,Uce=VCC-U2,Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态小功率管的β值远不止100,在150到400之间,或者更高,所以若按上面计算来做,电路是有可能处于饱和状态。
分压偏置电路

图3-6.06
      分压偏置电路的稳定性非常完美,放大系数β的变化对输出静态工作点IC和VCE几乎没有什么影响,我们在下面的分析中可以验证这一点。      对于分压偏置的输入端分析,有“近似分析”和“精确分析”两种方法,一般在实际工程应用中,“近似分析”法基本就够用了,但是“精确分析”法你也是需要掌握的。对于学习来说,仔细揣摩和比较这两种方法,可以增强你对模拟电路关于什么时候可以作简化的直觉。
(1) 近似分析法● 输入静态工作点:
      我们将分压偏置的共射放大电路重画于下,在直流分析(静态分析)时,可将动态输入电压vi视为0。

图3-6.07
      上图中,由于IB为微安级,而I1和I2都为毫安级,因此,可以近似认为:I1≈I2。
      作了如上近似后,基极B点的电压VB就很好算了,就是RB1和RB2对VCC的分压:

      而E点电压VE即为:

      至于IB,由于我们刚才已经将IB近似为0了,故这里IB就无法再计算了。好在近似分析法中,即使我们不计算IB,也不影响后面的“输出静态工作点”的计算。
● 输出静态工作点:
      由于在近似分析法中,IB已经近似为0,就不能用IC=β IB这个公式来计算IC了。我们需要用别的方法来计算IC,看下图:

图3-6.08
      在刚才的输入分析中,我们已经算得VE:

      而IE即为:

      我们再近似认为:IC≈IE,即可得到:

      然后VCE即为:

(2) 精确分析法      在精确分析法中,不再将IB近似为0,而是列出详尽的回路方程,然后进行数值解,如下图所示:(VBE仍简化为0.7V)

图3-6.09
      对于上面的电路图,我们可以列出若干方程硬算,也可以借助一些电路等效化简方法巧妙地减少手算工作量,两者结果是一样的。下面分别予以介绍:
● 硬核计算:
      对于上图,主要的电流关系式和主要的电压关系式为:

      我们可以分别列出I1、I2、VE的欧姆定律计算式:

      将它们代入上面的主电流、电压关系式可得:

      在上面这个方程组中,仅含有VB和IB两个未知变量。耐心一点、按部就班地一步步推算,是可以解出IB和VB的,IB最终可解得为:

      解出IB后,用IC=β IB的关系式,可以很方便地求出输出端的静态工作点IC和VCE,这里就不再重复写了。
● 电路等效化简后计算:
      上面的方程组,看上去好像不算太复杂,但其实真的算起来,还是有一点工作量的(至少我用了三大张纸)。而且在解方程时把各个量颠来倒去地抄写,很容易出错。所以,一般在做电路计算时,会先考虑一下电路能不能化简,把电路尽量化简成等效的最简单形式,这样最终列出的方程就会比较简单,解起来也不太会出错。
      电路等效化简最常用的方法就是:戴维南等效电路和诺顿等效电路,我们现在尝试用戴维南等效电路的方法,对上面的图3-6.09进行等效化简:
      对于输入端的分析,从三极管的基极(B点)向左看,可以将B点左侧的外部电路视为一个戴维南等效电路,如下图所示:

图3-6.10
      对于上面做完戴维南等效的最右图,列写输入侧的KVL方程就很容易了:

      解得IB为:

      是不是要比上面的硬核计算法要简单很多?至于戴维南等效电压VTH和戴维南等效电阻RTH就很好算啦,如下图所示:

图3-6.11
      计算戴维南等效电压VTH时,可将右侧视为开路:

      计算戴维南等效电阻RTH时,可将电压源VCC视为短路:

      然后再将VTH和RTH代入上面的IB,最终结果和前面硬算的结果是一致的。
案例3-6-2:分别用近似分析法和精确分析法,计算下图分压偏置电路的IB, IC, VCE。

图3-6.a2

解:(1)近似分析法:

      验证:VCE > VCEsat,说明BJT工作于放大区的假设正确。
(2)精确分析法:
      先计算戴维南等效电压和电阻:

      再将其代入IB计算式:

      假设BJT工作于放大区:

      验证:VCE > VCEsat,说明BJT工作于放大区的假设正确。
      比较:从上面两种方法计算得到的IC和VCE来看,两种算法的结果非常接近,故知近似分析法在大部分情况下是可以对电路进行大致评估计算的,而且近似分析法不需要用到β参数,说明分压偏置电路的静态工作点基本不受β影响
(3) 饱和条件      当VCECEsat时,晶体管进入饱和区。因此,我们可以算出此时的集电极饱和电流ICsat,

      当IC>ICsat时,晶体管进入饱和。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具

发表回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


联系客服 关注微信 下载APP 返回顶部 返回列表