1 、简述
光电耦合器(英文:optical coupler 或photo coupler),亦称光耦合器、光隔离器以及光电隔离器,简称光耦。这种器件的想法是在1963由Akmenkalns等人提出(美国专利号:US
patent 3,417,249),并且以光敏电阻为基础的光电耦合元件在1968年问世。它是以光(含可见光、红外线等)作为媒介来传输电信号的一组装置,其功能是平时让输入电路及输出电路之间隔离,在需要时可以使电信号通过隔离层的传送方式。这样就使得光信号(发射端)和电信号(接收端)互不干扰,因而具有良好的电绝缘能力和抗干扰能力。目前常见的各类光电耦合器的实物图如下:
(图1:常见的各种光耦)
2 、原理及构造
如下图(2)所示,光电耦合器一般由三部分组成:光电发射端、光电接收端、输出端信号放大及整形及驱动变换电路单元。其基本作用原理是:输入的电信号驱动光发射源(各种波长的LED发光二极管或激光,还有早期使用的电灯泡、霓虹灯等),使之发光,而物理空间隔离的另外一端由光探测器(光敏电阻、光芒二极管、光敏三极管等)接收而产生光电流,再经过进一步放大后输出。这就完成了“电—>光—>电”的转换,从而起到输入、输出、隔离的作用。值得一提的是:图(2)中最下面的那种光耦结构,由于发射端和接收端空间距离较远,相比上面那种结构光耦,具有更高的爬电距离或隔离电压等级。
3、分类&特性
根据光电耦合器件输出端的不同电路结构和特性,大致可分类如下几种:
3-1. 晶体管输出型光耦
这是最常见的光耦,输入端分为直流信号或交流信号控制型,输出端都是晶体管(单体或达林顿---具有更高的电流传输比)。这种类型的光耦凭借其价格低和通用性特点广泛使用于各种应用。晶体管输出光耦的特点是:大电流传输比(CTR)、高耐压、低输入电流。因为这类光耦,光电接收器使用的是光敏三极管,所以缺点也是明显的:传输速度较慢,时序延时较大。
3-2. 高速IC输出型光耦
这种光耦采用光敏二极管(Photo-Diode)作为光接收元件,同时内部带有一个集成电路(IC)做信号放大和整形,可实现高速信号的传输。相比于前面晶体管输出光耦只能提供最高几kHz的信号传输,此类光耦能提供1至50Mbps速率的数据传输。IC输出光耦有两种类型:一种是设计用于传输逻辑信号的通用器件,另一种是具有特殊功能的器件,包括用于功率元件,比如IGBT等的栅极驱动器。
3-3.
线性输出型光耦
这种线性模拟光电耦合器内含一个高性能 AlGaAs LED和两个高度匹配的光敏二极管(Photo-Diode)。输入光二极管可以用来监测并稳定 LED 的光度输出,因此 LED 的非线性和漂移特性几乎被消除,输出光二极管会产生线性对应 LED 光输出的光电流,光二极管间的紧密匹配和先进的封装设计可以确保光电耦合器的高线性度和稳定增益。
上图是立创商城上HCNR200 (商品编号:C23785)的特性曲线(可见线性度是很高的)和内部结构,它特别适用于可以用来提供需要良好稳定性、线性度、带宽和低成本等各种广泛应用的模拟信号隔离。
3-4. 可控硅输出型光耦
这种可控硅光耦,既有双向可控硅输出,也有单向可控硅输出。该类型的光耦主要用于控制交流负载,比如直接连接到家庭、办公室和工厂中采用100或200Vrms商业电源的电机和电磁阀。它们采用了高耐压型可控硅,可以打开和关闭输入电流低至10mA的交流负载,同时提供电气隔离。虽然单一的可控硅光耦只能控制最高100mA左右的交流电,但它可以结合使用一个功率可控硅,以便控制高达几安培的交流电。
3-5. 光继电器
这种光继电器是指含有一个MOSFET光耦合LED的光耦。光继电器相比机械继电器而言具有许多优点,比如更长的使用寿命、低电流驱动和快速响应,广泛应用于半导体测试系统、安保系统等的接触开关。
4 、主要技术参数
1、反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。
2、反向击穿电压VBR:被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。
3、正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。
4、正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。设计者需要确保LED电流至少等于数据表中规定的触发LED电流(最大值)。而且,这个电流还根据温度变化而变化,因此也需要考虑使用的温度范围。
5、反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。
6、输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。
7、反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
8、电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
9、脉冲上升时间tr,下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
10、传输延迟时间tPHL,tPLH:从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。
11、入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。
12、入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。
13、入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。
5 、光耦合器的选型
在设计光耦光电隔离电路时,必须正确选择光耦合器的型号及参数,选取原则如下:
(1)根据功能的需要,选择不同的光耦类型,比如:如果是数据通信用,那应该用高
高速IC输出型光耦;而控制大电流的继电器或灯泡,应该用光继电器 或可控硅继电器。
(2)由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件;
(3)光耦合器的电流传输比(CTR)的允许范围是不小于500%。因为当CTR5.0 mA),才能保证信号在长线传输中不发生错误,这会增大光耦的功耗;
(4)光电耦合器的传输速度也是选取光耦必须遵循的原则之一,光耦开关速度过慢,无法对输入电平做出正确反应,会影响电路的正常工作;
(5)线性光耦。其特点是CTR值能够在一定范围内做线性调整。设计中由于电路输入输出均是一种高低电平信号,故此,电路工作在非线性状态。而在线性应用中,因为信号不失真的传输,所以,应根据动态工作的要求,设置合适的静态工作点,使电路工作在线性状态。
线性光耦
常用的线性光耦是PC817A—C系列。
高速光耦高速光耦的结构是光敏二极管+放大驱动电路,普通光耦的结构是光敏三极管(+放大驱动电路)。光敏二极管的响应速度(上升下降时间)是纳秒级,光敏三极管的响应速度(上升下降时间)是微秒级
100Kbit/S:
6N138、6N139、PS8703
1Mbit/S:
6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)
10Mbit/S:
6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)
光耦常用于电路隔离
光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通
道上的信号杂讯比大为提高,主要有以下几方面的原因:
(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常
为 105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦
合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而
不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间
的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过
光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至
输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之
间可以承受几千伏的高压。
(4)光电耦合器的回应速度极快,其回应延迟时间只有 10μs 左右,适于对回
应速度要求很高的场合。
注意事项
(1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共
用一个电源,则光电耦合器的隔离作用将失去意义。
(2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数位量
信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的
联系,否则这种隔离是没有意义的
当然,一般应用,多种类型光耦都可能符合要求,这种情况下我们肯定选价格低的。 |